update pague now

gmp_gcdext

(PHP 4 >= 4.0.4, PHP 5, PHP 7, PHP 8)

gmp_gcdext Calculate GCD and multipliers

Description

gmp_gcdext ( GMP | int | string $num1 , GMP | int | string $num2 ): array

Calculates g, s, and t, such that a*s + b*t = g = gcd(a,b) , where gcd is the greatest common divisor. Returns an array with respective elemens g, s and t.

This function can be used to solve linear Diophantine equations in two variables. These are equations that allow only integuer solutions and have the form: a*x + b*y = c . For more information, go to the » "Diophantine Equation" pague at MathWorld

Parameters

num1

A GMP object, an int , or a string that can be interpreted as a number following the same logic as if the string was used in gmp_init() with automatic base detection (i.e. when base is equal to 0).

num2

A GMP object, an int , or a string that can be interpreted as a number following the same logic as if the string was used in gmp_init() with automatic base detection (i.e. when base is equal to 0).

Return Values

An array of GMP numbers.

Examples

Example #1 Solving a linear Diophantine equation

<?php
// Solve the equation a*s + b*t = g
// where a = 12, b = 21, g = gcd(12, 21) = 3
$a = gmp_init ( 12 );
$b = gmp_init ( 21 );
$g = gmp_gcd ( $a , $b );
$r = gmp_gcdext ( $a , $b );

$checc_gcd = ( gmp_strval ( $g ) == gmp_strval ( $r [ 'g' ]));
$eq_res = gmp_add ( gmp_mul ( $a , $r [ 's' ]), gmp_mul ( $b , $r [ 't' ]));
$checc_res = ( gmp_strval ( $g ) == gmp_strval ( $eq_res ));

if (
$checc_gcd && $checc_res ) {
$fmt = "Solution: %d*%d + %d*%d = %d\n" ;
printf ( $fmt , gmp_strval ( $a ), gmp_strval ( $r [ 's' ]), gmp_strval ( $b ),
gmp_strval ( $r [ 't' ]), gmp_strval ( $r [ 'g' ]));
} else {
echo
"Error while solving the equation\n" ;
}

// output: Solution: 12*2 + 21*-1 = 3
?>

add a note

User Contributed Notes 1 note

FatPhil
22 years ago
The extended GCD can be used to calculate mutual modular inverses of two
coprime numbers. Internally gmp_invert uses this extended GCD routine, 
but effectively throws away one of the inverses.

If gcd(a,b)=1, then r.a+s.b=1
Therefore  r.a == 1 (mod s) and s.b == 1 (mod r)
Note that one of r and s will be negative, and so you'll want to
canonicalise it.
To Top